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The slow motion of two or more spheres 
through a viscous fluid 

By G. J. KYNCH 
Department of Mathematics, The Manchester College of Science and Technology 

(Received 5 July 1958) 

Expressions are derived for the velocity of two spheres, moving slowly under 
external forces through a viscous fluid, as a function of their separation and radii. 
They compare favourably with the available experimental data. A discussion of 
the interactions of three particles and some general comments on the settling of 
a swarm of spheres are also included. 

1. Introduction 
Despite the long time which has elapsed since Stokes’s law was proved for the 

slow motion of a rigid sphere through a viscous fluid, there has been no connected 
account of the slow motion of two spheres. In  this paper an attempt is made to 
remedy this omission for the very good reason that experiments are now being 
made (e.g. Hall 1956) of sufficient accuracy to justify a comparison with theory. 

It should also be borne in mind that the results of these calculations are used as 
the basis for theories of sedimentation of collections of particles and of the flow of 
suspensions. A satisfactory account should, therefore, be of such a type that it 
can readily be developed to discuss the motion of many particles. The first 
calculation to be made (Smoluchowski 1911) was of this type and was used to 
estimate the motion of a cloud of particles. Smoluchowski calculated the first 
terms in an expansion in powers of the ratio of the particle radius to the distance 
between centres, and his results are valid only for small values of this parameter. 
Later Burgers (1942) extended this calculation to one higher order with the same 
purpose in mind, using arguments based to a large extent on physical intuition. 
In themeantime Stimson & Jeffery (1926) gave a complete solution of the problem 
of two spheres falling one behind the other, where there is axial symmetry, but 
their method uses the symmetry and cannot be extended to handle more than two 
particles. 

The method described below is essentially an extension of that of Smoluchowski 
and Burgers. In  the next three sections we discuss the solutions of the fluid 
equations that are ne,eded for the solution of the two-body problem and com- 
parison with experiment. It is not assumed that the spheres are equal, but Q 4 is 
mostly concerned with theoretical predictions for equal spheres, and the measure- 
ments which are needed to verify them. The method is easily extended to describe 
the motion of more than two particles and two later sections describe briefly some 
special results for three or more particles. 
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The essential features of the motion of two particles are predicted in the paper 
by Smoluchowski. Equal spheres falling under gravity fall together with a con- 
stant separation, but they only fall vertically when the line of centres is either 
horizontal or vertical; otherwise they tend to slide downwards along the line of 
the centres. The experimental results of Hall agree qualitatively with these 
calculations for large separations of the particles, the discrepancies being due 
almost certainly to experimental error. Hall also compares his results with the 
predictions of Stimson & Jeffery (1926). A complete theory, neglecting inertia 
terms, is obtained by combining the solution of Stimson & Jeffery with another, 
still to be obtained, of the problem where the line joining the spheres is perpendi- 
cular to the direction of motion. 

A reader who is more interested in the qualitative results of this work need not 
examine too closely the next two sections which contain the mathematical 
analysis, although these sections define the notation used subsequently. 

2. Solutions of the Navier-Stokes equations 

inertia terms, are 
The hydrodynamic equations for an incompressible viscous fluid, neglecting 

V2u, = 2ap/ax, - (F,/p), C (au,/ax,) = 0, (2.1) 
a 

where 2pp is the mean pressure, p is the coefficient of viscosity, x, = (x, y, z )  are 
Cartesian co-ordinates and u,, Fa the Cartesian components of the velocity and 
body forces, respectively. If the body forces are zero, it  is easily deduced that 
V2p = 0,  and the solutions can be written in the form u, = va+xap,  where 
V2va = 0 (Kynch 1954). This result was used to derive the results stated below. 

It is not difficult to find solutions of these equations such that two of the 
velocity components are zero and the third component varies in an arbitrary 
manner on the surface of the sphere r = a. If the non-zero component is u, = f 
at  r = a, where f is a homogeneous function of the co-ordinates of degree m, which 
satisfies Laplace’s equation, then the fluid motion is 

r2 - a2 a2f u, = fS,,+-- 
2(1-m)i3xaax,’ 

(2.2) 

For example, when m = - (n + l ) ,  the function f can be any of the nth derivatives 
of ( l i ~ ) .  If m is positive or zero the solutions are regular at the origin, and if m is 
negative they have a singularity a t  the origin. 

To derive solutions corresponding to more general boundary conditions at 
r = a, we note that any function can be expanded on a sphere in terms of surface 
harmonics. In  particular, if q5 is any function defined on the surface, then 

1 
# = A(,) +A$ ax, (!) r + A  a ~ a ~ a a x ,  -EL (3 r + ... (on r = a) ,  (2.4) 

where A ,  A,, A,,, . . . are constants. In  this equation the usual summation con- 
vention has been adopted, repeated suffices a, ,8, . . . being summed over their three 
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values. To facilitate the manipulation of these expressions, a further convention 
is adopted where a group of n suffices (al, az,  a3, . . . , an) is denoted by a single 
roman letter (n), and a repeated suffix (n) is summed over all values of the group 
of TZ suffices and usually over all values of n = 0,1 ,2 ,3 ,  . . . as well. Thus equa- 
tion (2.4) becomes 

4 = '('/r)+',('/r),+Aa,(l/r),8+ ... 

i.e. # = zA,(l/a),. (2 .5)  

= z A , ( l / ~ ) ~  on ( r  = a): 

Let the velocity components Z L ~  have values, on a sphere A of radius a, expanded 
in the form, 

u, = C A,, ( l/a)m on A.  
m 

Let us also assume that the velocity tends to zero at infinity. Then by writing 
f = (l/r), in the particular solutions (2.2), we derive the solution 

(2.7)* 

The irrotational motion of a non-viscous fluid due to a moving body is usually 
described in terms of a suitable distribution of sources, dipoles and so on, whose 
velocity potentials are known. The solutions S can be regarded as those which 
arise from a generalization of this idea for viscous fluids. The radius a appears 
because we are specially interested in the motion of spherical particles, but it is 
simply an arbitrary parameter. The method used by Burgers (1942), which he 
attributes to Oseen (1927), seems to be based on these solutions when a = 0. The 
following interpretation of the pressure term is also due to Oseen. According to 
equation (2.1) any body force corresponds to a certain distribution of pressure 
and any term in the pressure can be regarded as the potential body force. Thus 
the motion (2.7) can be interpreted as the motion due to a distribution of body 
forces with a potential proportional to the pressure. If this motion is due to a 
moving body, the external force required to keep the body in motion through the 
viscous fluid is equivalent to a distribution of body forces throughout the fluid. 

The expansion in terms of sources, dipoles and so on is not believed to be 
strongly convergent, and the use of a general notation which implies that a 
number of terms in the expansion are to be used, may, therefore, seem un- 
necessary. In  fact, the solutions used here involving the radius of the sphere not 
only make it easier to satisfy the boundary conditions, but also seem to lead to 
expressions which converge quite rapidly unless ( r  - u) < a. 

To illustrate the use of these results, let us consider two simple problems. The 
Stokes problem is that of t~ rigid sphere of radius a and velocity components V:, 

* In precisely the same way we can derive a solution with the same variation on the 
surface of the sphere but regular inside it, using the solutions ~ ~ ~ + l ( l / r ) ~  of Laplaoe's 
equation. These solutions are homogeneous of degree n in the co-ordinates. 

13-2 
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but no angular velocity, moving through a fluid otherwise a t  rest. If there is no 
slipping the solution is 

US = ZaJ'$#jO(A). 
P 

To maintain the motion of the sphere it is necessary that there should be an 
external force with components, 

F f  = 67~paVf, (2-9) 

It is often convenient to refer, not to the external force on a particle but the 
Stokes velocity, or the velocity derived from the force by this equation. 

It can be shown, using the solutions ( 2 . 2 )  or in some other way, that in a general 
motion the force resisting the motion of a spherical particle is zero unless the 
fluid velocity contains the term AS';,, (A),  i.e. a certain type of singularity in A,  and 
that the external force necessary to balance the resistance is proportional to the 
coefficient of the term, in fact that 

Fa = 6npAa0. (2.10) 

The second problem is that of a sphere rotating with angular velocity o. 
Since the surface velocity is o A a, the boundary conditions are 

with similar equations for other pairs of suffixes. The solution is the elementary 
solution ( p  = x, y, x )  

(2.12) 

A calculation of the forces on the particle shows that this motion is o d y  main- 
tained by an external couple with components 

A 

G, = -87~pA~ , ,  etc. (2.13) 

Considerations similar to those for forces show that, in any general motion, the 
fluid only exerts a couple on the sphere when the constants are not zero, and 
that the external couple applied to the sphere is given by the last equation. 

In  the next section of this paper it is necessary to expand in the neighbourhood 
of A the solutions Sz,(B), with a singularity at  the centre B of a sphere of 
radius b.* These can be expressed in various ways using the formulae and the 
notation given in this pa,per and in Kynch (1956). If the position of the origin A 
relative to B is given by the vector R = BA,  then 

- 

d2, = R2 - b2- (2m + 3) r2/(2n + 3). (2.14) 

* It is in expansions of this type that it is better to use derivatives of (14) rather than 
associated Legendre polynomials. Such expansions have been used by Kirkwood in con- 
nexion with the transport and electrical properties of gases. The technique of using these 
expansions is not included here as it would involve explanations as long as those normally 
devoted to an account of the properties of expansions in terms of Legendre polynomials. 
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Derivatives of (1/R) are calculated with respect to the co-ordinates of A ,  and we 
have used the notation 

n!!  = n!l  . 3 . 5 . .  . (2n - 1 )  = 2n!/2n. 

Values on the surface of a sphere of radius a about A are immediately obtained 
by putting r = a in this equation. In  the expression so obtained the term in 
n = 1 ,  where we replace n by the single suffix p ,  deserves special mention. The 
coefficient of ( l / ~ ) ~  = ( l / a ) ,  has two suffices a and p ,  and we separate it into that 
part which does not change sign when these two are interchanged and that part 
which does change sign. These two are referred to as the symmetrical and anti- 
symmetrical parts of the coefficient, respectively, and we distinguish the latter 
by the use of square brackets and reserve round brackets for the symmetric part 
and the other coefficients. Thus, on r = a, we write 

3. The two-particle problem 
The fluid motion due to two spheres A and B, when the distance R between 

their centres is large, is the sum of the motions due to each, i.e. a combination of 
two solutions already obtained in equation (2.10) 

The forces acting on the spheres are 

Ff = 67~pA,,, F$ = 67~pB,,. (3 .2 )  

FJf = AaO/a, U c  = B,,/b. (3 .3)  

In the limit of infinite separation, the velocities of the spheres are 

Equation ( 3 . 1 )  is used as an approximation by both Smoluchowski ( 1 9 1 1 )  and 
Burgers (1942) .  Smoluchowski assumes that the velocities of the particles are 
given and uses the equation to obtain an approximate expression for the applied 
forces. Using the expansion (2 .19)  for the second term of the equation (3 .1 )  and 
equating the velocity of A to that term in the fluid velocity which does not vary 
over its surface, we find that, to this approximation, 

(3.4a) 

Similarly b U c  = B,, + A,, (AB)$. (3.4b),  
P 

Smoluchowski solves these equations for the constants A,,, B,,, to a first 
approximation and derives the formulae 

A,, = aUt - bUf(BA);& 

B,, = bUc-aU$(AB)$. 

(3.5) 

The forces are determined by equations (3 .2 ) .  
Burgers (1942)  assumes that the forces are known, and calculates the particle 

velocities. Thus A,,, B,, are known and the velocities are given directly by 
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equations (3.4). It is clear that this result is more accurate than the other. 
Inserting the values of the brackets and replacing forces by Stokes velocities 
(cf. 2.10), we deduce the formula, 

Uf = V f  + (b/4R) V f  {3(Jap + n, np) - (3n, np - ?lap) (a2 + b2)/R2}. (3.6) 

R = BA, and n, are the direction cosines of the directed line BA. Since the 
components of the Stokes velocity V B  along the line of centres are V g  = V?np, 
the term (Vfnp)n, represents a velocity of magnitude Vg along that line. In 
vector form 

--f 

1. ll; 
FIGURE 1. Co-ordinates and velocity components for two falling spheres. 

When the particles fall under gravity, the last term is absent when the line of 
centres is horizontal: otherwise it represents a velocity downwards along the line 
of centres. The same is true for B, so that the particles not only fall with an 
increased velocity but move sideways in the same sense, as if it were easier to move 
along the line of centres than across it. This effect was first pointed out by 
Smoluchowski. If the line of centres is inclined at an angle to the horizontal 
(figure 1) the horizontal and vertical velocities are 

These expressions are not symmetric in the radii, so that the smaller of two 
unequal particles with the same Stokes velocities moves 'faster than the larger. 

Burgers, by an argument based on equivalent body forces, deduces the first of 
further corrections which are needed to satisfy the boundary conditions. The 
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nature of these corrections is found by expanding the approximation (3.1) on the 
surface of B, 

u: = BaO +Ago {(AB);! (lib) + (1/b)p + (A@$ ( 1 / b ) p  

+ (AB);p ( 1 /b)pq + . . .}. (3.9) 

As in the previous section, the symbols p and q are used to denote single indices, 
with three values. The fluid does not slip over B if B is given a translation corre- 
sponding to the first two terms, an angular velocity corresponding to the third 
term involving [AB];;, and if in addition extra terms are added to the fluid 
velocity to cancel the remaining terms in the expansion. The most important of 
these is the fourth term, Ago(AB)J;(l/b),,  which is cancelled on the surface of 
B by the correction 

u a  = - Ago (ABIJ6'fJ;p (B).  (3.10) 

Adding a similar term for the correction on the surface of A we obtain 

.f = AgOX;o(A) -Ago(AB);w;JB) +BgoS;o(B) -Bgo(BA)%';,(A). (3.11) 

Picking out terms which are constant on A ,  as before, we obtain for the velocity 

(3.12) 
of A 

The third term which is the correction term can be evaluated using the expressions 

a U t  = A,, +Bgo(BA)$-Ago(AB)@ (BA);;. 

} (3.13) 
(AB)&$' = ( 3 ~ ~ / 4 R ~ ) n ~ ( 8 ~ ~ - - 3 n ~ n ~ ) -  (a3/12) (3b2+5a2) (l/R)gyp, 

+(BA);g+=&(BA);$ = (a/2R2)n,(8,,-5n,nY) (a/lS) (3b2+5a2) (l/R),Yp. 

Summing over y and p ,  we find that the main part of the correction is 

AU,f = - ( 15ab3/R4) (Vjfn,) n,. (3.14) 

This correction somewhat reduces the speed of A downwards along the line of 
centres given by equation (3.9). It is the correction given by Burgers (1942). 

It is now clear that it is possible to use our equations to derive systematically 
all the necessary corrections to any order. The fluid velocity must have the form 

u a  =ua(A)+ua(B) ,  P = P ( A ) + P ( B ) ,  (3.15) 

According to equations (2.10) and (2.13) of the previous section, the constants 
As,, B,, are proportional to the external forces and the antisymmetrical parts 
Asp, 8, ( p  = 1)  to the external couples on the particles A and B. The latter are 
zero in the absence of body couples and hence the coefficients Aap,  B ,  are 
symmetrical in the two suffices. 

The remaining coefficients are determined by the boundary conditions. For 
example, on the surface of A 

u, = v~-s l l ' , ,w+3(1 /~ )~ ,  

where U A  and wA are the translational velocity and angular velocity of A ,  and 
daYp is the alternating tensor. Expanding the expressions in equation (3.15) on 
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the surface of A with the end of the previous section we obtain equations which 

(3.16) 
are satisfied if * 

A,, + XB,,(BA)g = sue, 
J U p  + XBYm [BA];g = duYp wyda3, (3.17) 

B, + XBp (BA)f;L = 0, (3.18) 

A,,+XB,,(BA),"E = 0 (n > 1). (3.19) 

The bracket notation is explained at  the end of Q 2. 
When the external forces are known, the unknown constants A,, are obtained 

by solving equations (3.18) and (3.19) and the corresponding set of equations for 
the particle B. The velocity and angular velocity of the particles are then derived 
from equations (3.16) and (3.17). 

These equations were solved by successive approximations, no more satis- 
factory method having been found, for the velocities of the spheres in terms of 
the forces acting upon them.? Since the expressions (BA);; are proportional to 
various powers of the ratio of the particle radii to the distances between centres 
the expansion is approximately but not strictly in powers of this ratio. No attempt 
was made to collect all the terms of a given power, as it was quite clear that better 
convergence is obtained by retaining the grouping corresponding to the brackets 
(BA).  

The translation velocity of A is such that 

uU,A = A,o+Bgo(BA)$-Ago(AB)~((BA);O,+ ... (m > 0) (3.20) 

and its angular velocity 
d a y p w y a  A 3 - B  - g o [ B A ] ~ - A g o ( A B ) ~ ~ [ B A ] ~ ~ +  ... ( n ~  > 0). (3.21) 

The third term in equation (3.20) could be easily evaluated exactly, so that this 
was done, but only a few terms of the next term were obtained, The final result 

is as u: = V~(KGag+Ln,ng)+bV~(MGaB+Nn,ng), 
where K = 1 + 17ab6/16 + (ab2mf1/48) {54b4 - 6a2b2(4m2 + 6m - 1) 

m> 0 

+a4(m+1)2(2m+ 1)(2m+3)},  
L = ( 1!5d3/4) + 15ab6/16 - 15a3b5/2 + (abam+l/48) 

m>O 

x {54b4- 18a2b2(4m2+ 18m+9) 

+a4(m+1) (m+3) (2m+1) (2m+3)} ,  

M = a( 3 + a2 + b2)  + a3b3{fll + (a2 + b2)f12}, 
N = p( 1 - a2 - b2) + a3b3{g1, + (a2 + b2) g12}. 

8fll = - ( 3b2 + 5 ~ ' )  ( 3 ~ '  + 5b2),  
8(g11 +fll) = 150 - 420(a2 + b2)  + 6(63a4 + 63b4+ 130a2b2), 

4j12 = (5a2+3b2){5--4(39a2+ 77b2)+#5a2+7b2) (7bZ+3a2)}, 

4(g12+f12) = 195 - 3( 185a2+ 249b2) + 3( 1 7 3 $ ~ ~  + 482a2b2 + 301b') 

- (15/7) (5a2+ 3b') (3aZ+ 7b2) (7b2 + 5~').  

* This is a particular solution. Other solutions lead to the same results 

(3.22) 

. (3.23) 

t The solution for the forces in terms of the velocities ie not only less useful but much 
more slowly convergent. 
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The distance between centres is chosen as the unit length so that R = 1 and 
a ,  b now measure the radii as fractions of R. 

Because some of the coefficients of the higher powers of a and b are rather large, 
it seemed worth while to obtain an approximate solution containing contributions 
from all the terms in equation (3 .20) .  Such a solution can be obtained by assuming 
that the constants Aan = 0, for all n > 1 ; the various sums simplify and can be 
evaluated. 

The answer obtained in this way yields the values 

(3 .24)  I K = 1- (3ab3 /4 )Q(b2+:~2) ,  

L = - ( 15ab3/4) P(  1 - a2 -%b2), 

N = ~ ( 1 - a 2 - b 2 ) + ( 3 a 3 b 3 / 8 ) [ 1 0 P ( 1 - a 2 - ~ b 2 )  (1 -b2-*a2) (5 -6a2-6b2)  

( I / & )  = 1 - & ~ 3 b 3 ( 5 - 8 a 2 - 8 b ~ ) ~ ,  

( 1 / p )  = 1 - a3b3(5 - 6a2 - 6b2)2, 

M = t ( 3 + a 2 + b 2 ) + ( 3 ~ 3 b 3 / S ) Q ( 6 2 + Q a 2 ) ( b 2 + ~ ~ 2 ) ( 5 - 8 a 2 - 8 b 2 ) ,  

-Q(b2++a2) (b2+$a2) ( 5 -  8a2-8b2)] .  

The approximation P = Q = 1, yields terms which have already been included 
in the earlier expressions (3 .22)  and (3 .23)  so that the corrections due to higher 
order terms are proportional to ( P -  1 )  and ( Q -  1) .  These corrections are small 
unless one sphere is very much larger than the other. It seems likely, therefore, 
although it is not certain, that higher-order terms in the expansion (3 .20)  are not 
appreciable unless one sphere is much larger than the other, and that the series 
expansion is useful even up to the point where the two spheres are almost in 
contact. 

4. Discussion for two particles 
The analysis of the fall of two particles can be discussed without reference to the 

work of the previous two sections and the results of the discussion compared with 
the available experimental results. With the aid of the calculations of those two 
sections we can evaluate the constants and compare directly these results with 
our theory. 

The theoretical calculations of Smoluchowski and Burgers should agree 
satisfactorily with experimental results on the fall of two equal spheres when the 
distance between centres is more than three times their diameter. For smaller 
distances between centres the only theory available is that of Stimson & Jeffery, 
for spheres falling behind one another with equal velocities. In  this section we 
consider some general implications of our calculations and extend the comparison 
with experiment not only for equal spheres but for unequal spheres, as far as that 
is possible at  present. 

From the linearity of the hydrodynamic equations we conclude that the 
particle velocities can be derived from the vector equations, 

(4 .1 )  
U t  = V$( KSaj + Ln, nF) + b Vf(M&,, + Nn, ng), 

U: = Vf(K’aaP + L’n,nj) + uV$(M’Gap + N’nana), 

where the velocity coefficients K ,  K’, . . . , N’ denote functions only of the radii 
and the distance between centres, approximate values of which are given in the 
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previous section. In  the limit of infinite separation K and K’ tend to unity and the 
other constants tend to zero. 

If the velocities are resolved along and perpendicular to the line of centres, 
these equations become 

(4.2) } 
U,” = ( K + L )  V,”+b(M+N) Vg, 
U$ = KV$+bMVE, 

together with two similar equations for the velocity of B. Thus the velocity 
coefficients can be obtained by solving first the problem where both particles are 
acted on by forces along the line of centres, and then by solving a second problem 
where the forces are perpendicular to the line of centres. The first of these two 
problems has been solved in the most important case of equal velocities by 
Stimson & Jeffery, but a solution of the second has not yet been obtained. The 
values given below for these coefficients are determined from our series expansion. 

Experiments are usually conducted with particles falling under gravity in a 
vertical plane (figure 1). If the line of centres is inclined a t  an angle 8 to the 
horizontal, the horizontal and vertical velocities are 

U i  = VA(K + L sin2 0) + b VB(M + N sin2 #), 

U$ = ( V A L  + b V B N )  sin I9 cos 19, 

Uf = BB( K’ + L’ sin2 8 )  + a VA(M’ + N’ sin2 B ) ,  
UE = (a VAN‘ + L’ V B )  sin 8 cos 8. 

(4.3) I 
Equal particles with the same Stokes velocities V have the same velocity 

components 
(Us/  V )  = ( K  + a M )  + ( L  + aN) sin2 8, 

( Us/ V )  = ( L  + a f l )  sin B cos 8. (4.4) 

Hall (1956), having taken great care to manufacture almost identical particles, 
has verified that the velocity and the inclination 0 of the line of centres are 
constant during the motion of equal particles. The above equations suggest 
further conditions on the velocity which are independent of the values of the 
constants. First, the vertical velocity, for a given distance between centres, 
should be a linear function of sin2 8. Secondly, the particles move away from the 
vertical with a velocity proportional to ( L  + aN) which is the slope of the graph 
of the horizontal velocity. The greatest transverse velocity is +(L + aN)  when 
8 = 45“, or one half of the difference between the vertical velocities of fall for 
0 = 0 and I9 = 90”. 

The only experimental data on pairs of spheres available at  the moment is that 
of Hall (1956) and, owing to the large variation of the viscosity of the liquid with 
temperatures and the possibility that circulation of the liquid was not entirely 
prevented, his values may not be accurate enough to judge the theory. 

Figure 2 shows, for one pair of spheres,* the speed of fall plotted against sin2@ 
for various values of the ratio 2a = d/R of particle diameter to the distance 

* These are the particles labelled by Hall P3. The other experimental data given here 
relate to the same pair. Curves drawn for a second pair of particles are very similar and 
differ from the theory in the same way. 
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between centres. This diagram does not confirm a linear relation but the experi- 
mental errors are such that a relationship of this kind is not denied. 

Assuming that it exists, the sum m = ( L  + uN) equals the slope of the line, for 
each value of (d /R) .  Slopes calculated by two methods are given in table 1. The 
first is calculated by a least squares method, taking 

10ml = {8(U,o- U ~ ) + ~ ( U ~ O - ~ ~ O ) } / ~ .  

The second is calculated by the simple formula 

m2 = (Us,- U,)/V,. 

FIGURE 2. Speed of fall of equal spheres for various ratios of diameter to distance 
between centres (experimental). 

Finally, the table includes the values of a third quantity determined by the 
experimental data. The measurements include the angle E between the direction 
of fall and the vertical. According to equations (4.4), when 8 is small 

( L  + a N )  sin B cos B us 

v, ( K +  a M )  + ( L  + a N )  sin2 8 tan€ = - = 

= ( L  + a N )  sin 8 cos O/(K + a M ) ,  

Now ( K  + a M )  = (Ux),] V ,  where ( ?&), is the vertical velocity when O = 0. Thus, 
applying the equation for tans when 8 = 45", we deduce that 

m3 = 2 m t a n E  = ( L + ~ N ) .  

These three quantities agree as well as can be expected and, in particular, they all 
vary in the same way with the distance between centres. 

Figure 3 shows the same data in a different form, the velocity of fall being 
plotted against (d/R) for various directions of the line of centres for the pair of 
particles. These curves have kinks which may be due to experimental error 
(although it is curious that they appear in the same places for all 8) and it is note- 
worthy that they are continuous up to the value of d / R  = 1, which corresponds to 
contact between the spheres. 

Only two theoretical curves, for 8 = 0 and 8 = 90, are drawn for comparison, 
the others being very similar, and it is clear that agreement with experiment is not 

approx. 

V* 
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very good. This may well be due to a deficiency in the theory, but it may again be 
due to experimental error. Thus, in the case of large separation, where the theory 
is unlikely to be in error, the experimental values are some 20 % less than the 
theoretical values. 

d P  
0.2 
0-3 
0.4 
0.5 
0.6 
0-7 
0.8 
0.9 
1.0 

"1 

0.065 
0-10 
0.14 
0.16 
0.17 
0.16 
0.16 
0-17 
0.16 

m2 

(experimental) 

0.056 
0.098 
0.136 
0-153 
0-173 
0-170 
0.166 
0.158 
0.152 

ma 

0.07 1 
0.098 
0.131 
0-150 
0.161 
0.161 
0-154 
0.149 
0-138 

m = L+aN 
(theoretical) 

0.073 
0.105 
0.133 
0-152 
0.163 
0-165 
0.161 
0.154 
0.155 

TABLE 1. Comparison of theoretical and experimental values of the slopes of the 
lines shown in figure 2, for various values of ( d / R ) .  

dlR 

FIGURE 3. Velocity of fall of equal spheres plotted against the distances between centres, 
for various inclinations 8 of the line of centres to the horizontal. [Theoretical - full lines 
for 0 = 0 and 90': Experimental + (O'), x (30°), 0 (45"), + (SO'), x (90°)]. 

The theoretical curves were derived from the expressions given in the previous 
section written in the form, 

1024K = 1024- 17d6-5d8- (69/16)d10-(31/8)d12, 

1024L = -240d4+ 105d6+47d8+(233/16)d10- (33/16)d12, 

1 0 2 4 ~ M  = 384d + 64d3 -I- 6d11 - ( 1  13/10) d13 + (225/28) d15, 

1 0 2 4 ~ N  = 384d- 192d3+ 150d'- 15d9-(471/2)d11+(176&)d13- (40&)dl5, 

which yield the values of the velocity constants as a function of d (R = 1) given in 
table 2. 
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d 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0-8 
0.9 
1.0 

K 

1-0 
1.000 
1.000 
1.000 
1.000 
1.000 
0.999 
0.998 
0-994 
0.986 
0.965 

L 

0.0 
- 0.000 
- 0.000 
- 0.002 
- 0.006 
- 0.013 
- 0.025 
- 0.041 
- 0.060 
- 0.075 
- 0.073 

aM 

0-0 
0-038 
0.076 
0-114 
0-154 
0.195 
0.239 
0.284 
0-332 
0.384 
0.440 

aN 
0-0 
0.037 
0.074 
0-107 
0.138 
0.165 
0.188 
0.207 
0-221 
0.229 
0.228 

TABLE 2. Theoretical values of K ,  L, aM and aN of equations for values of 
( d / R )  between 0 and 1. 

5. Three-particle interactions 
In  this section we consider the interactions between particles when three or 

more are falling through a liquid. In  addition to the interactions between pairs 
of particles, previously considered, there are now some that involve three distinct 
particles, namely, the effect of one particle on another in the presence of a third, 
and even more complicated interactions. Although these interactions arise in 
higher order approximation than the two-body interactions, it  will appear that 
they are not always negligible. They can be very numerous and they may be 
important for certain configurations of the particles. Thus the main correction to 
the fluid motion around B due to a particle C distant S from it is proportional to 
(Vc/S2)  (cf. equation 3.10). As this is a dipole correction, it gives to a third 
particle A a velocity of order VC/R2S2, where R = AB. In  some circumstances, 
therefore, this term is quite important. In  this section it is not our intention to 
evaluate these interactions to high order, or to discuss the general sedimentation 
problem, but rather to examine a few of the interactions in detail. Until methods 
of calculating the particle motions are discovered, which are more satisfactory 
than those used so far, there is little point in calculating these complicated terms 
to very high accuracy. 

The general formulae are easily obtained by extending equations (3.15) to 
(3.20) so that they apply to more than two particles. The general formula for the 
velocity of any particle A is 

aU$ = aVt+bVF(BA)$- C cV," C (CB)2;2;"(BA);O,+ ... (m>O). (5.1) 
C + B  B+A 

In  this equation the sum over B includes all particles other than A ; and the sum 
over C includes all particles other than B, including C = A ,  so that this expression 
reduces to that already given in equation (3.24) when there are only two particles. 
The second term is the vector sum over all particles of the main term in their two- 
body intersection with A .  This is the term which is normally considered in an 
aggregate of particles. On account of its long range it is responsible for the 
shielding effect (Kynch 1954) and tends to make all the particles move together, 
but the details of the effects of this term have still to be worked out. Except for 
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special arrangements it is difficult to deduce the motion of just three particles, 
even when this two-body interaction is the only one included. One special 
arrangement is that where one particle A is in a vertical plane midway between 
the others. If the three particles have the same Stokes velocity, the two particles 
separate to allow A to pass between them and then close up behind it. This motion 
is stable with respect to small displacements of A on either side of the vertical 
plane. 

A W  
FIGURE 4. Co-ordinates for four falling spheres. 

The third term contains three-body interactions, those which involve three 
distinct particles (CBA) and that due to the reaction of (ABA) of A on itself due 
to the presence of B. Interactions involving four distinct particles appear first in 
the next term of the series. The main term in the velocity of A due to C in the 
presence of B, using a notation shown in figure 4, is 

(CBA) 77: = (c/u) V$'(CB)gg (BA);; ( p  = 1). (5 .2 )  

Since this expression is symmetrical in a and p ,  and the principal terms of 
+(BA)$ + +(BA);t are proportional to BA,, it follows that the principal terms 
lead to a correction directed along the line BA. They give 

(5.3) 

Its dependence on the relative positions of the particles is not too complicated. 
Let us assume the VCis directed vertically downwards. The correction is directed 
along the line AB and, when C is below B, it  is from A towards B as long as 
3 cos26 > 1, i.e. the line AB lies within a cone with BC as axis and semi-vertical 
angle a = cos-1 (4). If C is above B the sense is reversed. Hence, for certain 
orientations the velocity (CBA) increases the main term (BA),  whereas for other 
orientations it tends to cancel it. The change of sign when the direction of CB is 
reversed means that the three body terms tend to cancel under certain circum- 
stances. For example, when a set of particles falls downwards in a line, these terms 
tend to cancel for particles in the middle, to  increase the speed of those at  the top 
and to decrease the speed of those at  the bottom, i.e. to keep the particles together. 
(They are, of course, usually rather less in magnitude than the two-body inter- 
actions which tend to separate the particles.) 

The reaction of A on itself due to the presence of B is obtained by making 
C = A and 6 = 180". It is, as given in equation (3.14), 

(CBA) 77: = ( 15cb3/8R2S2) (3 cos2 19 - 1) ( VFsfi) r,. 

(ABA) U$ = - ( 15ab3/4R4) ( V$rfi) T,. (5.4) 
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The correction of next importance comes from the remaining parts of (5.2) and 

(CBA) UA = {3cb3(3b + 5a2)} (V.  s) {( 1 - 5 cos2 0) r + 2 cos 0s) 

the next term in (5.1) with m = 2 

+ { 3cb3( 3b2 + 5c2)} {(V . s) (1 - 5 cos2 0) r + 2(V.  r) cos Or} 
- (cb5/64R3S3) [V( 117 cos2 0 - 49) - (V . r) 54 cos 0s 
+ ( V . s )  ( 1 5 7 5 ~ 0 ~ ~ 0 - 7 2 9 c o s O ) r  

- {(V . s )  s + (V . r) r} (315 cos2 0 - 93)]. 

1 (5 .5 )  

i 
This expression reduces, when C = A ,  to the expression given in equation (3.27) 

(ABA) Ua = (15a3b3/2R6) (V.r)r-(ab5/16R6){17V+15(V.r)r}. (5.6) 

If the position of C is changed so that the direction of s (or C B )  is reversed, the 
terms in the first two lines of (5.5) change sign but those after do not. Let us 
compare with (5.6) the correction when C is diametrically opposite to A ,  though 
the same distance from B as A ,  so that, when a = c, 

UA = -(15a3b3/2R6) (V.r)r-(ab5/16R6){17V+ 159(V.r)r}. (5.7) 

Comparing (5.6) and (5.7) we see that the coefficients of the third line are 
sufficiently large to produce an appreciable and complicated variation with the 
configuration of the particles. This is not unexpected since, as shown in the 
previous paragraph, there is a considerable variation in the two-body correction 
with orientation which must be reflected in these more complicated corrections. 

Without comment, we give the first four-body correction, which is directed 
along the line BA 

- 

75ab3c3d 
1 6R2S3T2 

(VD . t) ra (DCBA) dV$’(DC)g (CB)Jf (BA);; = 

x [ l -  3(r . ~ ) ~ + 3 ( t . s ) ~ ( 5 ( r  . s ) ~ -  1}- 6(r .s) (s.  t) (t .r)]. (5.8) 

6. Comments on sedimentation 
This section contains some general remarks on the calculation of sedimentation 

velocities with small concentrations of particles, which follow naturally from the 
results of the previous sections. In  5 5 a few comments were made about the role 
of the two-body interaction in an assembly of particles; here we are concerned 
with the higher order corrections. 

A finite assembly of identical particles falling freely under gravity through a 
viscous medium cannot do so in the form of a regular lattice array. Differences 
between the motion of particles near the edge and those near the centre of the 
assembly produce perturbations which spread inwards from the boundary and 
spoil the regularity. On the other hand, the shielding effect mentioned earlier 
tends to prevent differences in velocity between particles, and it could happen 
that there is short-range order amongst the particles even when long-range order 
is absent. If there is short-range order this must be allowed for in any calculation 
of high-order interactions. If it  is absent the mean corrections can be calculated 
by taking an average for a random distribution of particles.* 

With this in mind, let us now examine the various terms of equation (5.1), 
assuming first that particles near a given particle A form a regular array over 

* We neglect the effect of aggregation and other complicating factors, such as wall effects. 
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distances for which the corrections are appreciable. It can be shown that many 
terms vanish independently of the form of the array. To prove this we note that 
all the terms start in the same way, 

Now (CB)JT = ( - )" (BC)jr ,  which changes sign when m is odd (though not 
when m is even) if the position of C is changed so that BC is reversed in 
direction. But, in a lattice array, all the particle C can be taken in pairs on 
opposite sides of B;  hence all those terms are zero where m is odd. For lattices the 
first relevant value of m is 2. The corrections given in the previous section in 
equation (5.4) can be ignored and only the third line of equation (5.5), which 
comes from m = 2, need be considered, and this is of order d6, where d is the ratio of 
particle diameter to distance between centres. Summing over all particles leads 
to a term in the velocity or order (concentration)2. 

This argument does not apply when there is no order. To prove this we consider 
the three-body terms only, although the same method can be applied to the 
other terms, where it takes a much more complicated form. The three-body inter- 
actions are either of the type (CBA) or (ABA),  

In the absence of correlations, for given positions of A and B, we now average over 
all positions of C. Neglecting the finite size of the particle, the first term is zero 
for all m > 0, owing to the angular variation of (CB)JT. Owing to the finite size 
of the particles, however, C is excluded from a region near the particle A of 
radius 2a. The average value of (CB)Jg when C is in this region is approximately 
(All)$? and the probability of its being there is 8c, where c is the volume concen- 
tration of particles. Thus the correction becomes approximately 

( 1  - SC) C ~ V j f ( A B ) j r  (BA)GL. 
m 

The first term of this sum with m = p = 1, namely a% (AB)Jg (BA)?:, already 
given in equation (3.12), was, in fact, used by Burgers in his calculation of the 
sedimentation velocity (1942). It has been criticized (Hawksley 1950) on the 
grounds that it gives a correction which is too small. The arguments given here 
suggest precisely the opposite: that it overestimates the correction when there 
is a random distribution of particles and is much too large when there is partial 
order. Assuming that the basis of these calculations is correct we must attribute 
the error to neglect of higher order correctives which have large coefficients. 
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